# Panel Data Models

# Model Framework

The basic framework of a regression model for panel data is

𝑦𝑖𝑡=𝑥𝑖𝑡β+𝑧𝑖α+ε𝑖𝑡
  • Pooled Regression: If 𝑧𝑖 contains only a constant term.
  • Fixed Effects: If 𝑧𝑖 is unobserved, but correlated with 𝑥𝑖𝑡, the model becomes 𝑦𝑖𝑡=𝑥𝑖𝑡β+α𝑖+ε𝑖𝑡.
  • Random Effects: If 𝑧𝑖 is unobserved and uncorrelated with 𝑥𝑖𝑡, the model becomes 𝑦𝑖𝑡=𝑥𝑖𝑡β+α+𝑢𝑖+ε𝑖𝑡.
  • Random Parameters: Coefficients vary randomly across individuals, i.e., 𝑦𝑖𝑡=𝑥𝑖𝑡(β+𝑖)+(α+𝑢𝑖)+ε𝑖𝑡.

# Assumptions

  1. Full rank: X has full column rank.
  2. Exogeneity of the independent variables: E[ε𝑖|𝑥𝑗1,𝑥𝑗2,,𝑥𝑗𝐾]=0,i,j=1,...,n.
  3. Homoscedasticity and nonautocorrelation.

For consistency of b, we need plim1n𝑋𝑋=plimQ¯n=Q, a positive definite matrix, and

plim1n𝑋ε=plimw¯n=E[w¯n]=0.

# The Pooled Regression Model

# Basic Pooled Regression Model

Assumptions.

𝑦𝑖𝑡=α+𝑥𝑖𝑡β+ε𝑖𝑡,i=1,,n,t=1,,𝑇𝑖𝐸[ε𝑖𝑡|𝑥1𝑡,𝑥2𝑡,,𝑥𝑖𝑇𝑖]=0Var[ε𝑖𝑡|𝑥1𝑡,𝑥2𝑡,,𝑥𝑖𝑇𝑖]=σε2Cov[εi𝑡,x𝑗𝑠|𝑥1𝑡,𝑥2𝑡,,𝑥𝑖𝑇𝑖]=0, if ij or ts.

OLS estimator is unbiased, consistent, and efficient.

# Heterogeneity in Pooled Regression Model

A general model yi=Xiβ+wi and Var[wi|Xi]=σε2ITi+Σi=Ωi.

Asy.Var[b]=1nplim[1ni=1nXiXi]1plim[1ni=1nXiΩiXi]plim[1ni=1nXiXi]1No  Est. Asy. Var[b]=1n(XXn)1(1ni=1nei2xixi)(XXn)1

White heteroscedasticity consistent estimator is not appropriate, since the problem is the correlation across observations, not heteroscedasticity.

# Robust Estimation using Group Means

The pooled regression model can be estimated using the sample means of the data,

1Tiyi=1TiXiβ+1Tiwi,

or

y¯i=x¯iβ+w¯i,

where i is a row vector of ones.

# Estimation with First Differences

The first difference model is,

Δyit=Δα+(Δxit)β+Δεit=Δα+(Δxit)β+εitεi,t1=(Δxit)β+uit.

# The Within and Between Groups Estimation

General regression:

yit=α+xitβ+εit.

Group means:

y¯i=α+x¯iβ+ε¯i.

Deviation from the group means:

yity¯i=(xitx¯i)β+(εitε¯i).

Define

Sxxtotal =i=1nt=1T(xitx¯)(xitx¯) and Sxytotal =i=1nt=1T(xitx¯)(yity¯),Sxxwithin=i=1nt=1T(xitx¯i)(xitx¯i) and Sxywithin=i=1nt=1T(xitx¯i)(yity¯i),

and

Sxxbetween =i=1nt=1T(x¯ix¯)(x¯ix¯) and Sxybetween =i=1nt=1T(x¯ix¯)(y¯iy¯),

then

btotal =Fwithin bwithin +Fbetweeen bbetween ,

where

Fwithin =[Sxxtotal ]1Sxxwithin =IFbetweeen .Sxxtotal =Sxxwithin+Sxxbetween .

# The Fixed Effects Model

The fixed effects model has the form

𝑦𝑖𝑡=𝑥𝑖𝑡β+α𝑖+ε𝑖𝑡
  • α𝑖 is allowed to be correlated with 𝑥𝑖𝑡, and each α𝑖 is treated as an unknown parameter to be estimated.
  • The coefficients on the time invariant variables cannot be estimated.

In each group, we have

yi=Xiβ+iαi+εi

# Least Squares Estimation

Least squares dummy variables (LSDV) model:

𝑦=𝑋β+𝐷α+ε.

Estimator of β:

𝑏=[𝑋𝑀𝐷𝑋]1[𝑋𝑀𝐷𝑌]=𝑏within,

where

𝑀𝐷=I𝐷(𝐷𝐷)1𝐷.

Estimator of α𝑖:

a=[𝐷𝐷]1𝐷(𝑦𝑋𝑏),

so we have

α𝑖=𝑦¯𝑖𝑥¯𝑖𝑏.

Covariance matrix for b is

Est.Asy.Var[b]=s2[XMDX]1=s2[SXXwithin ]1,

and

s2=i=1nt=1T(yitxitbai)2nTnK=(MDyMDXb)(MDyMDXb)nTnK.

# Significance of the Group Effects

Test:

H0:All αi are equal;H1:Otherwise.

Statistic:

F(n1,nTnK)=(RLSDV2RPooled2)/(n1)(1RLSDV2)/(nTnK).

# The Random Effects Model

# Assumptions

The random effect model is

yit=α+xitβ+ui+εit=α+xitβ+ηit,

with assumptions

E[εitX]=E[uiX]=0,E[εit2X]=σε2,E[uit2X]=σu2,E[εitujX]=0 for all i, t, and j, E[εitεjsX]=0 for ts or ij,E[uiujX]=0 if ij.

# Least Squares Estimation

Three models,

(1)yit=α+xitβ+ui+εit,(2)yity¯i=(xitx¯)β+(εitε¯i),(3)y¯i=α+x¯iβ+ui+ε¯i.

Variance estimation,

 (Pooled) plim[epooled epooled /(nT)]=σε2+σu2,(LSDV)plim[eLSDVeLSDV/(nT)]=σε2[11/T], (Means) plim[emeans emeans /(nT)]=σε2/T+σu2

# Generalized Least Squares

The GLS estimator is

btotal =F^within bwithin +(IF^within )bbetween ,

where

F^within=[Sxxwithin+λSxxbetween]1Sxxwithin,

and

λ=σε2σε2+Tσu2=(1θ)2.

FGLS

Estimate variances,

σε2=sLSDV2=i=1nt=1T(eite¯i)2nTnK,

and

σ^u2=sPooled2sLSDV2.

# Testing for Random Effects

Lanrange multiplier test,

H0:σu2=0 (or Corr[ηit,ηis]=0);H1:σ20.

The test statistic is

LM=nT2(T1)[i=1n[t=1Teit]2i=1nt=1Teit21]2dχ2(1).

# Hausman’s Specification Test

Hausman’s test is used to decide which model, fixed effects or random effects, to use.

The test statistic is

(bβ^)[Var(b)Var(β^)]1(bβ^)χ2(K1).